{ "id": "1203.1509", "version": "v1", "published": "2012-03-07T15:56:10.000Z", "updated": "2012-03-07T15:56:10.000Z", "title": "Zak Transform for Semidirect Product of Locally Compact Groups", "authors": [ "Arash Ghaani Farashahi", "Ali Akbar Arefijamaal" ], "categories": [ "math.FA", "math-ph", "math.MP" ], "abstract": "Let $H$ be a locally compact group and $K$ be an LCA group also let $\\tau:H\\to Aut(K)$ be a continuous homomorphism and $G_\\tau=H\\ltimes_\\tau K$ be the semidirect product of $H$ and $K$ with respect to $\\tau$. In this article we define the Zak transform $\\mathcal{Z}_L$ on $L^2(G_\\tau)$ with respect to a $\\tau$-invariant uniform lattice $L$ of $K$ and we also show that the Zak transform satisfies the Plancherel formula. As an application we show that how these techniques apply for the semidirect product group $\\mathrm{SL}(2,\\mathbb{Z})\\ltimes_\\tau\\mathbb{R}^2$ and also the Weyl-Heisenberg groups.", "revisions": [ { "version": "v1", "updated": "2012-03-07T15:56:10.000Z" } ], "analyses": { "keywords": [ "locally compact group", "semidirect product group", "zak transform satisfies", "invariant uniform lattice", "plancherel formula" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1203.1509G" } } }