{ "id": "1203.1218", "version": "v1", "published": "2012-03-06T15:04:50.000Z", "updated": "2012-03-06T15:04:50.000Z", "title": "Stability result for a time dependent potential in a waveguide", "authors": [ "Patricia Gaitan", "Yavar Kian" ], "categories": [ "math.AP" ], "abstract": "We consider the operator $H:= \\partial_t -\\Delta+V$ in 2D or 3D waveguide. With an adapted global Carleman estimate with singular weight functions we give a stability result for the time dependent part of the potential for this particular geometry. Two cases are considered: the bounded waveguide with mixed Dirichlet and Neumann conditions and the open waveguide with Dirichlet boundary conditions.", "revisions": [ { "version": "v1", "updated": "2012-03-06T15:04:50.000Z" } ], "analyses": { "subjects": [ "35K20" ], "keywords": [ "time dependent potential", "stability result", "adapted global carleman estimate", "dirichlet boundary conditions", "singular weight functions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1203.1218G" } } }