{ "id": "1203.1111", "version": "v1", "published": "2012-03-06T07:06:23.000Z", "updated": "2012-03-06T07:06:23.000Z", "title": "Explicit evaluation of certain sums of multiple zeta-star values", "authors": [ "Shuji Yamamoto" ], "comment": "6 pages", "categories": [ "math.NT" ], "abstract": "Bowman and Bradley proved an explicit formula for the sum of multiple zeta values whose indices are the sequence (3,1,3,1,...,3,1) with a number of 2's inserted. Kondo, Saito and Tanaka considered the similar sum of multiple zeta-star values and showed that this value is a rational multiple of a power of \\pi. In this paper, we give an explicit formula for the rational part. In addition, we interpret the result as an identity in the harmonic algebra.", "revisions": [ { "version": "v1", "updated": "2012-03-06T07:06:23.000Z" } ], "analyses": { "subjects": [ "11M32", "05A15" ], "keywords": [ "multiple zeta-star values", "explicit evaluation", "explicit formula", "multiple zeta values", "similar sum" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1203.1111Y" } } }