{ "id": "1202.6528", "version": "v3", "published": "2012-02-29T12:27:26.000Z", "updated": "2013-05-22T12:56:48.000Z", "title": "Stability of tautological bundles on the Hilbert scheme of two points on a surface", "authors": [ "Malte Wandel" ], "comment": "14 pages, minors corrections of typos, replaced Lemma 2.2 by Def 2.2 and Prop. 2.3, to appear in Nag. Math. J", "categories": [ "math.AG" ], "abstract": "Let (X,H) be a polarized smooth projective surface satisfying H^1(X,O_X)=0 and let F be either a rank one torsion-free sheaf or a rank two {\\mu}H-stable vector bundle on X. Assume that c_1(F)/=0. In this article it is shown that the rank two, respectively rank four tautological sheaf F^{[2]} associated with F on the Hilbert square X^{[2]} is {\\mu}-stable with respect to a certain polarization.", "revisions": [ { "version": "v3", "updated": "2013-05-22T12:56:48.000Z" } ], "analyses": { "subjects": [ "14D20", "14J28", "14J60", "14F05" ], "keywords": [ "hilbert scheme", "tautological bundles", "smooth projective surface satisfying", "vector bundle", "hilbert square" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1202.6528W" } } }