{ "id": "1202.5785", "version": "v1", "published": "2012-02-26T18:04:23.000Z", "updated": "2012-02-26T18:04:23.000Z", "title": "On Certain Computations of Pisot Numbers", "authors": [ "Qi Cheng", "Jincheng Zhuang" ], "comment": "10 pages", "categories": [ "math.NT" ], "abstract": "This paper presents two algorithms on certain computations about Pisot numbers. Firstly, we develop an algorithm that finds a Pisot number $\\alpha$ such that $\\Q[\\alpha] = \\F$ given a real Galois extension $\\F$ of $\\Q$ by its integral basis. This algorithm is based on the lattice reduction, and it runs in time polynomial in the size of the integral basis. Next, we show that for a fixed Pisot number $\\alpha$, one can compute $ [\\alpha^n] \\pmod{m}$ in time polynomial in $(\\log (m n))^{O(1)}$, where $m$ and $n$ are positive integers.", "revisions": [ { "version": "v1", "updated": "2012-02-26T18:04:23.000Z" } ], "analyses": { "subjects": [ "11K16" ], "keywords": [ "computations", "time polynomial", "integral basis", "real galois extension", "fixed pisot number" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }