{ "id": "1202.5698", "version": "v1", "published": "2012-02-25T21:07:56.000Z", "updated": "2012-02-25T21:07:56.000Z", "title": "Modules over cluster-tilted algebras determined by their dimension vectors", "authors": [ "Ibrahim Assem", "Grégoire Dupont" ], "comment": "9 pages", "categories": [ "math.RT", "math.RA" ], "abstract": "We prove that indecomposable transjective modules over cluster-tilted algebras are uniquely determined by their dimension vectors. Similarly, we prove that for cluster-concealed algebras, rigid modules lifting to rigid objects in the corresponding cluster category are uniquely determined by their dimension vectors. Finally, we apply our results to a conjecture of Fomin and Zelevinsky on denominators of cluster variables.", "revisions": [ { "version": "v1", "updated": "2012-02-25T21:07:56.000Z" } ], "analyses": { "subjects": [ "16G20", "13F60" ], "keywords": [ "dimension vectors", "cluster-tilted algebras", "cluster variables", "corresponding cluster category", "rigid objects" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1202.5698A" } } }