{ "id": "1202.5561", "version": "v3", "published": "2012-02-24T21:25:22.000Z", "updated": "2012-11-16T12:05:08.000Z", "title": "Second order stability for the Monge-Ampere equation and strong Sobolev convergence of optimal transport maps", "authors": [ "Guido De Philippis", "Alessio Figalli" ], "categories": [ "math.AP" ], "abstract": "The aim of this note is to show that Alexandrov solutions of the Monge-Ampere equation, with right hand side bounded away from zero and infinity, converge strongly in $W^{2,1}_{loc}$ if their right hand side converge strongly in $L^1_{loc}$. As a corollary we deduce strong $W^{1,1}_{loc}$ stability of optimal transport maps.", "revisions": [ { "version": "v3", "updated": "2012-11-16T12:05:08.000Z" } ], "analyses": { "keywords": [ "optimal transport maps", "strong sobolev convergence", "second order stability", "monge-ampere equation", "hand side bounded away" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1202.5561D" } } }