{ "id": "1202.5061", "version": "v4", "published": "2012-02-22T23:04:01.000Z", "updated": "2013-07-16T09:45:46.000Z", "title": "Berry-Esséen bounds for the least squares estimator for discretely observed fractional Ornstein-Uhlenbeck processes", "authors": [ "Khalifa Es-Sebaiy" ], "comment": "arXiv admin note: text overlap with arXiv:1102.5491", "categories": [ "math.PR" ], "abstract": "Let $\\theta>0$. We consider a one-dimensional fractional Ornstein-Uhlenbeck process defined as $dX_t= -\\theta\\ X_t dt+dB_t,\\quad t\\geq0,$ where $B$ is a fractional Brownian motion of Hurst parameter $H\\in(1/2,1)$. We are interested in the problem of estimating the unknown parameter $\\theta$. For that purpose, we dispose of a discretized trajectory, observed at $n$ equidistant times $t_i=i\\Delta_{n}, i=0,...,n$, and $T_n=n\\Delta_{n}$ denotes the length of the `observation window'. We assume that $\\Delta_{n} \\rightarrow 0$ and $T_n\\rightarrow \\infty$ as $n\\rightarrow \\infty$. As an estimator of $\\theta$ we choose the least squares estimator (LSE) $\\hat{\\theta}_{n}$. The consistency of this estimator is established. Explicit bounds for the Kolmogorov distance, in the case when $H\\in(1/2,3/4)$, in the central limit theorem for the LSE $\\hat{\\theta}_{n}$ are obtained. These results hold without any kind of ergodicity on the process $X$.", "revisions": [ { "version": "v4", "updated": "2013-07-16T09:45:46.000Z" } ], "analyses": { "keywords": [ "fractional ornstein-uhlenbeck processes", "squares estimator", "berry-esséen bounds", "one-dimensional fractional ornstein-uhlenbeck process", "fractional brownian motion" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1202.5061E" } } }