{ "id": "1202.4902", "version": "v2", "published": "2012-02-22T13:23:34.000Z", "updated": "2013-01-18T13:13:50.000Z", "title": "Metrics on tiling spaces, local isomorphism and an application of Brown's Lemma", "authors": [ "Rui Pacheco", "Helder Vilarinho" ], "categories": [ "math.DS", "math.MG" ], "abstract": "We give an application of a topological dynamics version of multidimensional Brown's lemma to tiling theory: given a tiling of an Euclidean space and a finite geometric pattern of points $F$, one can find a patch such that, for each scale factor $\\lambda$, there is a vector $\\vec{t}_\\lambda$ so that copies of this patch appear in the tilling \"nearly\" centered on $\\lambda F+\\vec{t}_\\lambda$ once we allow \"bounded perturbations\" in the structure of the homothetic copies of $F$. Furthermore, we introduce a new unifying setting for the study of tiling spaces which allows rather general group \"actions\" on patches and we discuss the local isomorphism property of tilings within this setting.", "revisions": [ { "version": "v2", "updated": "2013-01-18T13:13:50.000Z" } ], "analyses": { "keywords": [ "tiling spaces", "application", "local isomorphism property", "multidimensional browns lemma", "euclidean space" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1202.4902P" } } }