{ "id": "1202.4732", "version": "v1", "published": "2012-02-21T19:21:25.000Z", "updated": "2012-02-21T19:21:25.000Z", "title": "Kummer Theory for Drinfeld Modules", "authors": [ "Richard Pink" ], "categories": [ "math.NT" ], "abstract": "Let {\\phi} be a Drinfeld A-module of characteristic p0 over a finitely generated field K. Previous articles determined the image of the absolute Galois group of K up to commensurability in its action on all prime-to-p0 torsion points of {\\phi}, or equivalently, on the prime-to-p0 adelic Tate module of {\\phi}. In this article we consider in addition a finitely generated torsion free A-submodule M of K for the action of A through {\\phi}. We determine the image of the absolute Galois group of K up to commensurability in its action on the prime-to-p0 division hull of M, or equivalently, on the extended prime-to-p0 adelic Tate module associated to {\\phi} and M.", "revisions": [ { "version": "v1", "updated": "2012-02-21T19:21:25.000Z" } ], "analyses": { "subjects": [ "11G09", "11R58" ], "keywords": [ "drinfeld modules", "kummer theory", "generated torsion free a-submodule", "adelic tate module", "absolute galois group" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1202.4732P" } } }