{ "id": "1202.4517", "version": "v1", "published": "2012-02-21T02:55:15.000Z", "updated": "2012-02-21T02:55:15.000Z", "title": "The Closure of Spectral Data for Constant Mean Curvature Tori in $ S ^ 3 $", "authors": [ "Emma Carberry", "Martin Ulrich Schmidt" ], "comment": "20 pages", "categories": [ "math.DG", "math.AG" ], "abstract": "The spectral curve correspondence for finite-type solutions of the sinh-Gordon equation describes how they arise from and give rise to hyperelliptic curves with a real structure. Constant mean curvature (CMC) 2-tori in $ S ^ 3 $ result when these spectral curves satisfy periodicity conditions. We prove that the spectral curves of CMC tori are dense in the space of smooth spectral curves of finite-type solutions of the sinh-Gordon equation. One consequence of this is the existence of countably many real $ n $-dimensional families of CMC tori in $ S ^ 3 $ for each positive integer $ n $.", "revisions": [ { "version": "v1", "updated": "2012-02-21T02:55:15.000Z" } ], "analyses": { "subjects": [ "53A10", "14H70", "53C42", "37K10" ], "keywords": [ "constant mean curvature tori", "spectral data", "spectral curves satisfy periodicity conditions", "cmc tori", "finite-type solutions" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1202.4517C" } } }