{ "id": "1202.4068", "version": "v1", "published": "2012-02-18T10:42:24.000Z", "updated": "2012-02-18T10:42:24.000Z", "title": "The circle method and bounds for $L$-functions - I", "authors": [ "Ritabrata Munshi" ], "comment": "8 pages", "categories": [ "math.NT" ], "abstract": "Let $f$ be a Hecke-Maass or holomorphic primitive cusp form of arbitrary level and nebentypus, and let $\\chi$ be a primitive character of conductor $M$. For the twisted $L$-function $L(s,f\\otimes \\chi)$ we establish the hybrid subconvex bound $$ L(1/2+it,f\\otimes\\chi)\\ll (M(3+|t|))^{1/2-1/18+\\varepsilon}, $$ for $t\\in \\mathbb R$. The implied constant depends only on the form $f$ and $\\varepsilon$.", "revisions": [ { "version": "v1", "updated": "2012-02-18T10:42:24.000Z" } ], "analyses": { "keywords": [ "circle method", "holomorphic primitive cusp form", "hybrid subconvex bound", "arbitrary level", "implied constant depends" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1202.4068M" } } }