{ "id": "1202.3860", "version": "v2", "published": "2012-02-17T10:02:32.000Z", "updated": "2012-11-27T14:17:45.000Z", "title": "Uniform rectifiability and harmonic measure II: Poisson kernels in $L^p$ imply uniform rectifiability", "authors": [ "Steve Hofmann", "José María Martell", "Ignacio Uriarte-Tuero" ], "categories": [ "math.CA", "math.AP" ], "abstract": "We present the converse to a higher dimensional, scale-invariant version of a classical theorem of F. and M. Riesz. More precisely, for $n\\geq 2$, for an ADR domain $\\Omega\\subset \\re^{n+1}$ which satisfies the Harnack Chain condition plus an interior (but not exterior) Corkscrew condition, we show that absolute continuity of harmonic measure with respect to surface measure on $\\partial\\Omega$, with scale invariant higher integrability of the Poisson kernel, is sufficient to imply uniformly rectifiable of $\\partial\\Omega$.", "revisions": [ { "version": "v2", "updated": "2012-11-27T14:17:45.000Z" } ], "analyses": { "subjects": [ "31B05", "35J08", "35J25", "42B99", "42B25", "42B37" ], "keywords": [ "imply uniform rectifiability", "harmonic measure", "poisson kernel", "harnack chain condition plus", "scale invariant higher integrability" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1202.3860H" } } }