{ "id": "1202.3841", "version": "v4", "published": "2012-02-17T05:12:04.000Z", "updated": "2015-07-28T00:54:09.000Z", "title": "A functional model for pure $Γ$-contractions", "authors": [ "Tirthankar Bhattacharyya", "Sourav Pal" ], "comment": "Journal of Operator Theory, 71 (2014), 327-339", "categories": [ "math.FA" ], "abstract": "A pair of commuting operators $(S,P)$ defined on a Hilbert space $\\mathcal H$ for which the closed symmetrized bidisc $$ \\Gamma= \\{(z_1+z_2,z_1z_2):: |z_1|\\leq 1,\\, |z_2|\\leq 1 \\}\\subseteq \\mathbb C^2, $$ is a spectral set is called a $\\Gamma$-contraction in the literature. A $\\Gamma$-contraction $(S,P)$ is said to be pure if $P$ is a pure contraction, i.e, ${P^*}^n \\rightarrow 0$ strongly as $n \\rightarrow \\infty $. Here we construct a functional model and produce a complete unitary invariant for a pure $\\Gamma$-contraction. The key ingredient in these constructions is an operator, which is the unique solution of the operator equation $$ S-S^*P=D_PXD_P, \\textup{where} X\\in \\mathcal B(\\mathcal D_P), $$and is called the fundamental operator of the $\\Gamma$-contraction $(S,P)$. We also discuss some important properties of the fundamental operator.", "revisions": [ { "version": "v3", "updated": "2012-06-07T07:26:27.000Z", "comment": "11 pages", "journal": null, "doi": null }, { "version": "v4", "updated": "2015-07-28T00:54:09.000Z" } ], "analyses": { "keywords": [ "functional model", "fundamental operator", "complete unitary invariant", "spectral set", "important properties" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1202.3841B" } } }