{ "id": "1202.2961", "version": "v1", "published": "2012-02-14T08:24:17.000Z", "updated": "2012-02-14T08:24:17.000Z", "title": "Automorphisms of moduli spaces of vector bundles over a curve", "authors": [ "Indranil Biswas", "Tomas L. Gomez", "V. Munoz" ], "comment": "12 pages", "categories": [ "math.AG" ], "abstract": "Let X be an irreducible smooth complex projective curve of genus g at least 4. Let M(r,\\Lambda) be the moduli space of stable vector bundles over X or rank r and fixed determinant \\Lambda, of degree d. We give a new proof of the fact that the automorphism group of M(r,\\Lambda) is generated by automorphisms of the curve X, tensorization with suitable line bundles, and, if r divides 2d, also dualization of vector bundles.", "revisions": [ { "version": "v1", "updated": "2012-02-14T08:24:17.000Z" } ], "analyses": { "subjects": [ "14H60" ], "keywords": [ "moduli space", "irreducible smooth complex projective curve", "divides 2d", "stable vector bundles", "automorphism group" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1202.2961B" } } }