{ "id": "1202.2471", "version": "v1", "published": "2012-02-11T20:37:37.000Z", "updated": "2012-02-11T20:37:37.000Z", "title": "The Vlasov-Poisson-Landau System in $\\R^3_x$", "authors": [ "Robert M. Strain", "Keya Zhu" ], "comment": "50 pages", "categories": [ "math.AP", "math-ph", "math.MP" ], "abstract": "For the Landau-Poisson system with Coulomb interaction in $\\R^3_x$, we prove the global existence, uniqueness, and large time convergence rates to the Maxwellian equilibrium for solutions which start out sufficiently close.", "revisions": [ { "version": "v1", "updated": "2012-02-11T20:37:37.000Z" } ], "analyses": { "keywords": [ "vlasov-poisson-landau system", "large time convergence rates", "coulomb interaction", "maxwellian equilibrium", "global existence" ], "tags": [ "journal article" ], "publication": { "doi": "10.1007/s00205-013-0658-0", "journal": "Archive for Rational Mechanics and Analysis", "year": 2013, "month": "Nov", "volume": 210, "number": 2, "pages": 615 }, "note": { "typesetting": "TeX", "pages": 50, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013ArRMA.210..615S" } } }