{ "id": "1202.2421", "version": "v1", "published": "2012-02-11T07:42:07.000Z", "updated": "2012-02-11T07:42:07.000Z", "title": "On good reduction of some K3 surfaces related to abelian surfaces", "authors": [ "Yuya Matsumoto" ], "comment": "21 pages", "categories": [ "math.NT", "math.AG" ], "abstract": "The Neron--Ogg--Safarevic criterion for abelian varieties tells that whether an abelian variety has good reduction or not can be determined from the Galois action on its l-adic etale cohomology. We prove an analogue of this criterion for some special kind of K3 surfaces (those which admit Shioda--Inose structures of product type), which are deeply related to abelian surfaces. We also prove a p-adic analogue. This paper includes Ito's unpublished result for Kummer surfaces.", "revisions": [ { "version": "v1", "updated": "2012-02-11T07:42:07.000Z" } ], "analyses": { "subjects": [ "11G25", "14G20", "14J28" ], "keywords": [ "k3 surfaces", "abelian surfaces", "abelian variety", "abelian varieties tells", "admit shioda-inose structures" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1202.2421M" } } }