{ "id": "1202.2247", "version": "v1", "published": "2012-02-10T12:40:44.000Z", "updated": "2012-02-10T12:40:44.000Z", "title": "Unlabeled equivalence for matroids representable over finite fields", "authors": [ "S. R. Kingan" ], "categories": [ "math.CO" ], "abstract": "We present a new type of equivalence for representable matroids that uses the automorphisms of the underlying matroid. Two $r\\times n$ matrices $A$ and $A'$ representing the same matroid $M$ over a field $F$ are {\\it geometrically equivalent representations} of $M$ if one can be obtained from the other by elementary row operations, column scaling, and column permutations. Using geometric equivalence, we give a method for exhaustively generating non-isomorphic matroids representable over a finite field $GF(q)$, where $q$ is a power of a prime.", "revisions": [ { "version": "v1", "updated": "2012-02-10T12:40:44.000Z" } ], "analyses": { "keywords": [ "finite field", "unlabeled equivalence", "generating non-isomorphic matroids representable", "elementary row operations", "column permutations" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1202.2247K" } } }