{ "id": "1202.2133", "version": "v1", "published": "2012-02-09T21:23:06.000Z", "updated": "2012-02-09T21:23:06.000Z", "title": "Linear stability analysis for periodic traveling waves of the Boussinesq equation and the KGZ system", "authors": [ "Sevdzhan Hakkaev", "Milena Stanislavova", "Atanas Stefanov" ], "categories": [ "math.AP" ], "abstract": "The question for linear stability of spatially periodic waves for the Boussinesq equation (the cases $p=2,3$) and the Klein-Gordon-Zakharov system is considered. For a wide class of solutions, we completely and explicitly characterize their linear stability (instability respectively), when the perturbations are taken with the same period $T$. In particular, our results allow us to completely recover the linear stability results, in the limit $T\\to \\infty$, for the whole line case.", "revisions": [ { "version": "v1", "updated": "2012-02-09T21:23:06.000Z" } ], "analyses": { "subjects": [ "35B35", "35B40", "35G30" ], "keywords": [ "linear stability analysis", "periodic traveling waves", "boussinesq equation", "kgz system", "linear stability results" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1202.2133H" } } }