{ "id": "1202.2025", "version": "v2", "published": "2012-02-09T16:03:48.000Z", "updated": "2012-08-06T09:50:38.000Z", "title": "Almost Hadamard matrices: general theory and examples", "authors": [ "Teodor Banica", "Ion Nechita", "Karol Zyczkowski" ], "comment": "24 pages", "journal": "Open Syst. Inf. Dyn. 19 (2012), 1-26", "categories": [ "math.CO", "quant-ph" ], "abstract": "We develop a general theory of \"almost Hadamard matrices\". These are by definition the matrices $H\\in M_N(\\mathbb R)$ having the property that $U=H/\\sqrt{N}$ is orthogonal, and is a local maximum of the 1-norm on O(N). Our study includes a detailed discussion of the circulant case ($H_{ij}=\\gamma_{j-i}$) and of the two-entry case ($H_{ij}\\in{x,y}$), with the construction of several families of examples, and some 1-norm computations.", "revisions": [ { "version": "v2", "updated": "2012-08-06T09:50:38.000Z" } ], "analyses": { "keywords": [ "general theory", "hadamard matrices", "local maximum", "circulant case", "two-entry case" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1202.2025B" } } }