{ "id": "1202.2006", "version": "v1", "published": "2012-02-09T14:49:21.000Z", "updated": "2012-02-09T14:49:21.000Z", "title": "Eight interesting identities involving the exponential function, derivatives, and Stirling numbers of the second kind", "authors": [ "Feng Qi" ], "comment": "9 pages", "journal": "Bai-Ni Guo and Feng Qi, Some identities and an explicit formula for Bernoulli and Stirling numbers, Journal of Computational and Applied Mathematics 255 (2014), 568--579", "doi": "10.1016/j.cam.2013.06.020", "categories": [ "math.CA", "math.CO", "math.NT" ], "abstract": "In the paper, the author establishes some identities which show that the functions $\\frac1{(1-e^{\\pm t})^k}$ and the derivatives $\\bigl(\\frac1{e^{\\pm t}-1}\\bigr)^{(i)}$ can be expressed each other by linear combinations with coefficients involving the combinatorial numbers and the Stirling numbers of the second kind, where $t\\ne0$ and $i,k\\in\\mathbb{N}$.", "revisions": [ { "version": "v1", "updated": "2012-02-09T14:49:21.000Z" } ], "analyses": { "subjects": [ "26A24", "33B10", "11B73", "34A30" ], "keywords": [ "second kind", "stirling numbers", "exponential function", "interesting identities", "derivatives" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1202.2006Q" } } }