{ "id": "1202.1852", "version": "v2", "published": "2012-02-08T22:52:39.000Z", "updated": "2012-04-30T16:46:16.000Z", "title": "Strong Resilience of Topological Codes to Depolarization", "authors": [ "H. Bombin", "Ruben S. Andrist", "Masayuki Ohzeki", "Helmut G. Katzgraber", "M. A. Martin-Delgado" ], "comment": "10 pages, 6 figures, 1 table - see Physics Viewpoint by D. Gottesman [http://physics.aps.org/articles/v5/50]", "journal": "Phys. Rev. X 2, 021004 (2012)", "doi": "10.1103/PhysRevX.2.021004", "categories": [ "quant-ph", "cond-mat.dis-nn" ], "abstract": "The inevitable presence of decoherence effects in systems suitable for quantum computation necessitates effective error-correction schemes to protect information from noise. We compute the stability of the toric code to depolarization by mapping the quantum problem onto a classical disordered eight-vertex Ising model. By studying the stability of the related ferromagnetic phase both via large-scale Monte Carlo simulations and via the duality method, we are able to demonstrate an increased error threshold of 18.9(3)% when noise correlations are taken into account. Remarkably, this agrees within error bars with the result for a different class of codes-topological color codes-where the mapping yields interesting new types of interacting eight-vertex models.", "revisions": [ { "version": "v2", "updated": "2012-04-30T16:46:16.000Z" } ], "analyses": { "subjects": [ "03.67.Lx", "75.40.Mg", "03.67.Pp", "75.50.Lk" ], "keywords": [ "strong resilience", "topological codes", "disordered eight-vertex ising model", "depolarization", "quantum computation necessitates effective error-correction" ], "tags": [ "journal article" ], "publication": { "publisher": "APS", "journal": "Physical Review X", "year": 2012, "month": "Apr", "volume": 2, "pages": "021004" }, "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "inspire": 1088793, "adsabs": "2012PhRvX...2b1004B" } } }