{ "id": "1202.1847", "version": "v1", "published": "2012-02-08T22:14:49.000Z", "updated": "2012-02-08T22:14:49.000Z", "title": "On the most visited sites of planar Brownian motion", "authors": [ "Valentina Cammarota", "Peter Mörters" ], "categories": [ "math.PR" ], "abstract": "Let (B_t : t > 0) be a planar Brownian motion and define gauge functions $\\phi_\\alpha(s)=log(1/s)^{-\\alpha}$ for $\\alpha>0$. If $\\alpha<1$ we show that almost surely there exists a point x in the plane such that $H^{\\phi_\\alpha}({t > 0 : B_t=x})>0$, but if $\\alpha>1$ almost surely $H^{\\phi_\\alpha} ({t > 0 : B_t=x})=0$ simultaneously for all $x\\in R^2$. This resolves a longstanding open problem posed by S.,J. Taylor in 1986.", "revisions": [ { "version": "v1", "updated": "2012-02-08T22:14:49.000Z" } ], "analyses": { "subjects": [ "60J65" ], "keywords": [ "planar brownian motion", "visited sites", "define gauge functions", "longstanding open problem" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1202.1847C" } } }