{ "id": "1202.1816", "version": "v1", "published": "2012-02-08T20:52:07.000Z", "updated": "2012-02-08T20:52:07.000Z", "title": "The Cauchy-Davenport Theorem for Finite Groups", "authors": [ "Jeffrey Paul Wheeler" ], "comment": "11 pages with references", "categories": [ "math.CO" ], "abstract": "The Cauchy-Davenport theorem states that for any two nonempty subsets A and B of Z/pZ we have |A+B| >= min{p,|A|+|B|-1}, where A+B:={a+b (mod p) | a in A, b in B}. We generalize this result from Z/pZ to arbitrary finite (including non-abelian) groups. This result from early in 2006 is independent of Gyula Karolyi's 2005 result.", "revisions": [ { "version": "v1", "updated": "2012-02-08T20:52:07.000Z" } ], "analyses": { "subjects": [ "11P99", "05E15", "20D60" ], "keywords": [ "finite groups", "cauchy-davenport theorem states", "gyula karolyis", "nonempty subsets", "arbitrary finite" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1202.1816W" } } }