{ "id": "1202.1741", "version": "v1", "published": "2012-02-08T15:42:40.000Z", "updated": "2012-02-08T15:42:40.000Z", "title": "A criterion for detecting the identifiability of symmetric tensors of size three", "authors": [ "Edoardo Ballico", "Luca Chiantini" ], "categories": [ "math.AG" ], "abstract": "We prove a criterion for the identifiability of symmetric tensors $P$ of type $3\\times ...\\times 3$, $d$ times, whose rank $k$ is bounded by $(d^2+2d)/8$. The criterion is based on the study of the Hilbert function of a set of points $P_1,..., P_k$ which computes the rank of the tensor $P$.", "revisions": [ { "version": "v1", "updated": "2012-02-08T15:42:40.000Z" } ], "analyses": { "subjects": [ "14N05", "15A69" ], "keywords": [ "symmetric tensors", "identifiability", "hilbert function" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1202.1741B" } } }