{ "id": "1202.1684", "version": "v1", "published": "2012-02-08T13:01:04.000Z", "updated": "2012-02-08T13:01:04.000Z", "title": "Cylinders' percolation in three dimensions", "authors": [ "Marcelo Hilário", "Vladas Sidoravicius", "Augusto Teixeira" ], "comment": "24 pages, 2 figures", "categories": [ "math.PR" ], "abstract": "We study the complementary set of a Poissonian ensemble of infinite cylinders in R^3, for which an intensity parameter u > 0 controls the amount of cylinders to be removed from the ambient space. We establish a non-trivial phase transition, for the existence of an unbounded connected component of this set, as u crosses a critical non-degenerate intensity u*. We moreover show that this complementary set percolates in a sufficiently thick slab, in spite of the fact that it does not percolate in any given plane of R^3, regardless of the choice of u.", "revisions": [ { "version": "v1", "updated": "2012-02-08T13:01:04.000Z" } ], "analyses": { "subjects": [ "82B43", "82B26", "60K35" ], "keywords": [ "percolation", "dimensions", "complementary set percolates", "non-trivial phase transition", "critical non-degenerate intensity" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1202.1684H" } } }