{ "id": "1202.1159", "version": "v1", "published": "2012-02-06T14:57:44.000Z", "updated": "2012-02-06T14:57:44.000Z", "title": "The spectral curve of the Eynard-Orantin recursion via the Laplace transform", "authors": [ "Olivia Dumitrescu", "Motohico Mulase", "Brad Safnuk", "Adam Sorkin" ], "comment": "49 pages, 7 figures", "categories": [ "math.AG", "math-ph", "math.CO", "math.MP" ], "abstract": "The Eynard-Orantin recursion formula provides an effective tool for certain enumeration problems in geometry. The formula requires a spectral curve and the recursion kernel. We present a uniform construction of the spectral curve and the recursion kernel from the unstable geometries of the original counting problem. We examine this construction using four concrete examples: Grothendieck's dessins d'enfants (or higher-genus analogue of the Catalan numbers), the intersection numbers of tautological cotangent classes on the moduli stack of stable pointed curves, single Hurwitz numbers, and the stationary Gromov-Witten invariants of the complex projective line.", "revisions": [ { "version": "v1", "updated": "2012-02-06T14:57:44.000Z" } ], "analyses": { "subjects": [ "14H15", "14N35", "05C30", "11P21", "81T30" ], "keywords": [ "spectral curve", "laplace transform", "recursion kernel", "eynard-orantin recursion formula", "stationary gromov-witten invariants" ], "note": { "typesetting": "TeX", "pages": 49, "language": "en", "license": "arXiv", "status": "editable", "inspire": 1340771, "adsabs": "2012arXiv1202.1159D" } } }