{ "id": "1202.0962", "version": "v2", "published": "2012-02-05T13:52:34.000Z", "updated": "2012-04-20T14:53:23.000Z", "title": "Numerical study of the small dispersion limit of the Korteweg-de Vries equation and asymptotic solutions", "authors": [ "T. Grava", "C. Klein" ], "categories": [ "math-ph", "math.AP", "math.MP", "nlin.SI" ], "abstract": "We study numerically the small dispersion limit for the Korteweg-de Vries (KdV) equation $u_t+6uu_x+\\epsilon^{2}u_{xxx}=0$ for $\\epsilon\\ll1$ and give a quantitative comparison of the numerical solution with various asymptotic formulae for small $\\epsilon$ in the whole $(x,t)$-plane. The matching of the asymptotic solutions is studied numerically.", "revisions": [ { "version": "v2", "updated": "2012-04-20T14:53:23.000Z" } ], "analyses": { "keywords": [ "small dispersion limit", "korteweg-de vries equation", "asymptotic solutions", "numerical study", "asymptotic formulae" ], "tags": [ "journal article" ], "publication": { "doi": "10.1016/j.physd.2012.04.001", "journal": "Physica D Nonlinear Phenomena", "year": 2012, "month": "Dec", "volume": 241, "number": "23-24", "pages": 2246 }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "inspire": 1088298, "adsabs": "2012PhyD..241.2246G" } } }