{ "id": "1202.0729", "version": "v2", "published": "2012-02-03T15:11:46.000Z", "updated": "2012-04-05T09:55:24.000Z", "title": "Small values of the Euler function and the Riemann hypothesis", "authors": [ "Jean-Louis Nicolas" ], "journal": "Acta Arithmetica, 155.3, 2012, 311--321", "categories": [ "math.NT" ], "abstract": "Let $\\vfi$ be Euler's function, $\\ga$ be Euler's constant and $N_k$ be the product of the first $k$ primes. In this article, we consider the function $c(n) =(n/\\vfi(n)-e^\\ga\\log\\log n)\\sqrt{\\log n}$. Under Riemann's hypothesis, it is proved that $c(N_k)$ is bounded and explicit bounds are given while, if Riemann's hypothesis fails, $c(N_k)$ is not bounded above or below.", "revisions": [ { "version": "v2", "updated": "2012-04-05T09:55:24.000Z" } ], "analyses": { "subjects": [ "11N37", "11M26" ], "keywords": [ "euler function", "riemann hypothesis", "small values", "riemanns hypothesis fails", "eulers constant" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1202.0729N" } } }