{ "id": "1202.0503", "version": "v1", "published": "2012-02-02T17:51:07.000Z", "updated": "2012-02-02T17:51:07.000Z", "title": "A characterisation of inner product spaces by the maximal circumradius of spheres", "authors": [ "Sebastian Scholtes" ], "comment": "8 pages", "categories": [ "math.FA", "math.CA", "math.MG" ], "abstract": "We give a new characterisation of inner product spaces amongst normed vector spaces in terms of the maximal cirumradius of spheres. It turns out that a normed vector space $(X,\\norm{\\cdot})$ with $\\dim X\\geq 2$ is an inner product space if and only if all spheres are not degenerate, i.e. the maximal circumradius of points on the sphere equals the radius of the sphere.", "revisions": [ { "version": "v1", "updated": "2012-02-02T17:51:07.000Z" } ], "analyses": { "subjects": [ "46C15", "46B20" ], "keywords": [ "inner product space", "maximal circumradius", "normed vector space", "characterisation", "sphere equals" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1202.0503S" } } }