{ "id": "1202.0045", "version": "v4", "published": "2012-01-31T22:43:00.000Z", "updated": "2015-03-10T09:03:46.000Z", "title": "Shortest Path through Random Points", "authors": [ "Sung Jin Hwang", "Steven B. Damelin", "Alfred O. Hero III" ], "categories": [ "math.PR" ], "abstract": "Let $(M,g_1)$ be a complete $d$-dimensional Riemannian manifold for $d > 1$. Let $\\mathcal X_n$ be a set of $n$ sample points in $M$ drawn randomly from a smooth Lebesgue density $f$ supported in $M$. Let $x,y$ be two points in $M$. We prove that the normalized length of the power-weighted shortest path between $x, y$ through $\\mathcal X_n$ converges almost surely to a constant multiple of the Riemannian distance between $x,y$ under the metric tensor $g_p = f^{2(1-p)/d} g_1$, where $p > 1$ is the power parameter.", "revisions": [ { "version": "v3", "updated": "2014-03-23T17:06:14.000Z", "abstract": "Let $(M,g_1)$ be a complete $d$-dimensional Riemannian manifold for $d > 1$. Let $\\mathcal X_n$ be a set of $n$ sample points in $M$ drawn randomly from a smooth Lebesgue density $f$ supported in $M$. Let $x,y$ be two points in $M$. We prove that the normalized length of the power-weighted shortest path between $x, y$ through $\\mathcal X_n$ converges almost surely to a constant multiple of the Riemannian distance between $x,y$ under the metric $g_p = f^{2(1-p)/d} g_1$, where $p > 1$ is the power parameter.", "comment": null, "journal": null, "doi": null }, { "version": "v4", "updated": "2015-03-10T09:03:46.000Z" } ], "analyses": { "subjects": [ "60F15", "60C05", "53B21" ], "keywords": [ "random points", "dimensional riemannian manifold", "smooth lebesgue density", "constant multiple", "power-weighted shortest path" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1202.0045H" } } }