{ "id": "1201.6125", "version": "v1", "published": "2012-01-30T07:58:59.000Z", "updated": "2012-01-30T07:58:59.000Z", "title": "Hurwitz - Bernoulli Numbers, Formal Groups and the L - Functions of Elliptic Curves", "authors": [ "H. Gopalakrishna Gadiyar", "R. Padma" ], "comment": "5 latex pages", "categories": [ "math.NT", "math.AG" ], "abstract": "Classically, Euler developed the theory of the Riemann zeta - function using as his starting point the exponential and partial fraction forms of cot(z) . In this paper we wish to develop the theory of $L$-functions of elliptic curves starting from the theory of elliptic functions in an analogous manner.", "revisions": [ { "version": "v1", "updated": "2012-01-30T07:58:59.000Z" } ], "analyses": { "subjects": [ "11B68", "11S40", "14H52", "14L05", "33E05" ], "keywords": [ "elliptic curves", "bernoulli numbers", "formal groups", "partial fraction forms", "riemann zeta" ], "note": { "typesetting": "LaTeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }