{ "id": "1201.6047", "version": "v1", "published": "2012-01-29T16:01:45.000Z", "updated": "2012-01-29T16:01:45.000Z", "title": "The exponential of the spin representation of the Lorentz algebra", "authors": [ "Jason Hanson" ], "categories": [ "math-ph", "math.MP", "quant-ph" ], "abstract": "As discussed in a previous article, any (real) Lorentz algebra element possess a unique orthogonal decomposition as a sum of two mutually annihilating decomposable Lorentz algebra elements. In this article, this concept is extended to the spin representation of the Lorentz algebra. As an application, a formula for the exponential of the spin representation is obtained, as well as a formula for the spin representation of a proper orthochronous Lorentz transformation.", "revisions": [ { "version": "v1", "updated": "2012-01-29T16:01:45.000Z" } ], "analyses": { "subjects": [ "22E43" ], "keywords": [ "spin representation", "exponential", "lorentz algebra element possess", "proper orthochronous lorentz transformation", "annihilating decomposable lorentz algebra elements" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1201.6047H" } } }