{ "id": "1201.5507", "version": "v1", "published": "2012-01-26T13:20:26.000Z", "updated": "2012-01-26T13:20:26.000Z", "title": "Uniform in bandwidth exact rates for a class of kernel estimators", "authors": [ "Davit Varron", "Ingrid Van Keilegom" ], "comment": "Published in the Annals of the Institute of Statistical Mathematics Volume 63, p. 1077-1102 (2011)", "categories": [ "math.ST", "stat.TH" ], "abstract": "Given an i.i.d sample $(Y_i,Z_i)$, taking values in $\\RRR^{d'}\\times \\RRR^d$, we consider a collection Nadarya-Watson kernel estimators of the conditional expectations $\\EEE(+d_g(z)\\mid Z=z)$, where $z$ belongs to a compact set $H\\subset \\RRR^d$, $g$ a Borel function on $\\RRR^{d'}$ and $c_g(\\cdot),d_g(\\cdot)$ are continuous functions on $\\RRR^d$. Given two bandwidth sequences $h_n<\\wth_n$ fulfilling mild conditions, we obtain an exact and explicit almost sure limit bounds for the deviations of these estimators around their expectations, uniformly in $g\\in\\GG,\\;z\\in H$ and $h_n\\le h\\le \\wth_n$ under mild conditions on the density $f_Z$, the class $\\GG$, the kernel $K$ and the functions $c_g(\\cdot),d_g(\\cdot)$. We apply this result to prove that smoothed empirical likelihood can be used to build confidence intervals for conditional probabilities $\\PPP(Y\\in C\\mid Z=z)$, that hold uniformly in $z\\in H,\\; C\\in \\CC,\\; h\\in [h_n,\\wth_n]$. Here $\\CC$ is a Vapnik-Chervonenkis class of sets.", "revisions": [ { "version": "v1", "updated": "2012-01-26T13:20:26.000Z" } ], "analyses": { "keywords": [ "bandwidth exact rates", "collection nadarya-watson kernel estimators", "mild conditions", "sure limit bounds", "build confidence intervals" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1201.5507V" } } }