{ "id": "1201.5385", "version": "v1", "published": "2012-01-25T21:04:40.000Z", "updated": "2012-01-25T21:04:40.000Z", "title": "Smoothness of the Beurling transform in Lipschitz domains", "authors": [ "Victor Cruz", "Xavier Tolsa" ], "comment": "32 pages", "categories": [ "math.CA", "math.AP" ], "abstract": "Let D be a planar Lipschitz domain and consider the Beurling transform of the characteristic function of D, B(1_D). Let 11. In this paper we show that if the outward unit normal N on bD, the boundary of D, belongs to the Besov space B_{p,p}^{a-1/p}(bD), then the Beurling transform of 1_D is in the Sobolev space W^{a,p}(D). This result is sharp. Further, together with recent results by Cruz, Mateu and Orobitg, this implies that the Beurling transform is bounded in W^{a,p}(D) if N belongs to B_{p,p}^{a-1/p}(bD), assuming that ap>2.", "revisions": [ { "version": "v1", "updated": "2012-01-25T21:04:40.000Z" } ], "analyses": { "subjects": [ "46E35", "30C62", "42B20" ], "keywords": [ "beurling transform", "smoothness", "planar lipschitz domain", "outward unit normal", "besov space" ], "note": { "typesetting": "TeX", "pages": 32, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1201.5385C" } } }