{ "id": "1201.5367", "version": "v1", "published": "2012-01-25T20:46:24.000Z", "updated": "2012-01-25T20:46:24.000Z", "title": "Rigidity of group actions on homogeneous spaces, III", "authors": [ "Uri Bader", "Alex Furman", "Alex Gorodnik", "Barak Weiss" ], "categories": [ "math.DS" ], "abstract": "Consider homogeneous G/H and G/F, for an S-algebraic group G. A lattice {\\Gamma} acts on the left strictly conservatively. The following rigidity results are obtained: morphisms, factors and joinings defined apriori only in the measurable category are in fact algebraically constrained. Arguing in an elementary fashion we manage to classify all the measurable {\\Phi} commuting with the {\\Gamma}-action: assuming ergodicity, we find they are algebraically defined.", "revisions": [ { "version": "v1", "updated": "2012-01-25T20:46:24.000Z" } ], "analyses": { "keywords": [ "group actions", "homogeneous spaces", "s-algebraic group", "rigidity results", "joinings defined apriori" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1201.5367B" } } }