{ "id": "1201.4991", "version": "v1", "published": "2012-01-24T14:43:50.000Z", "updated": "2012-01-24T14:43:50.000Z", "title": "Positive mass and Penrose type inequalities for asymptotically hyperbolic hypersurfaces", "authors": [ "Levi Lopes de Lima", "Frederico GirĂ£o" ], "comment": "18 pages, no figures", "categories": [ "math.DG" ], "abstract": "We establish versions of the Positive Mass and Penrose inequalities for a class of asymptotically hyperbolic hypersurfaces. In particular, under the usual dominant energy condition, we prove in all dimensions $n\\geq 3$ an optimal Penrose inequality for certain graphs in hyperbolic space $\\mathbb H^{n+1}$ whose boundary has constant mean curvature $n-1$.", "revisions": [ { "version": "v1", "updated": "2012-01-24T14:43:50.000Z" } ], "analyses": { "subjects": [ "53C24", "53C21" ], "keywords": [ "asymptotically hyperbolic hypersurfaces", "penrose type inequalities", "positive mass", "usual dominant energy condition", "constant mean curvature" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1201.4991L" } } }