{ "id": "1201.4912", "version": "v1", "published": "2012-01-24T04:10:51.000Z", "updated": "2012-01-24T04:10:51.000Z", "title": "Extremal Graphs Without 4-Cycles", "authors": [ "Frank A. Firke", "Peter M. Kosek", "Evan D. Nash", "Jason Williford" ], "comment": "9 pages", "categories": [ "math.CO" ], "abstract": "We prove an upper bound for the number of edges a C4-free graph on q^2 + q vertices can contain for q even. This upper bound is achieved whenever there is an orthogonal polarity graph of a plane of even order q.", "revisions": [ { "version": "v1", "updated": "2012-01-24T04:10:51.000Z" } ], "analyses": { "subjects": [ "05C35", "51E15" ], "keywords": [ "extremal graphs", "upper bound", "orthogonal polarity graph", "c4-free graph" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1201.4912F" } } }