{ "id": "1201.4887", "version": "v4", "published": "2012-01-23T22:20:55.000Z", "updated": "2013-08-05T18:22:07.000Z", "title": "Local classification of generalized complex structures", "authors": [ "Michael Bailey" ], "comment": "29 pages, adapted from Ph.D. thesis; v2 changes: retitled, shortened abstract, corrected typos, changed formatting; v3 changes: equation (2.9) was missing a term, proof of Lemma 6.9 adjusted to accommodate; v4 changes: slight editing, closer to published version", "journal": "J. Differential Geom., vol. 95, no. 1 (2013) 1-37", "categories": [ "math.DG", "math.SG" ], "abstract": "We give a local classification of generalized complex structures. About a point, a generalized complex structure is equivalent to a product of a symplectic manifold with a holomorphic Poisson manifold. We use a Nash-Moser type argument in the style of Conn's linearization theorem.", "revisions": [ { "version": "v4", "updated": "2013-08-05T18:22:07.000Z" } ], "analyses": { "subjects": [ "53D18" ], "keywords": [ "generalized complex structure", "local classification", "conns linearization theorem", "nash-moser type argument", "holomorphic poisson manifold" ], "tags": [ "dissertation", "journal article" ], "note": { "typesetting": "TeX", "pages": 29, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1201.4887B" } } }