{ "id": "1201.4341", "version": "v1", "published": "2012-01-20T17:08:34.000Z", "updated": "2012-01-20T17:08:34.000Z", "title": "Congruences for Convolutions of Hilbert Modular Forms", "authors": [ "Thomas Ward" ], "comment": "20 pages", "categories": [ "math.NT" ], "abstract": "Let $\\f$ be a primitive, cuspidal Hilbert modular form of parallel weight. We investigate the Rankin convolution $L$-values $L(\\f,\\g,s)$, where $\\g$ is a theta-lift modular form corresponding to a finite-order character. We prove weak forms of Kato's `false Tate curve' congruences for these values, of the form predicted by conjectures in non-commmutative Iwasawa theory.", "revisions": [ { "version": "v1", "updated": "2012-01-20T17:08:34.000Z" } ], "analyses": { "keywords": [ "congruences", "cuspidal hilbert modular form", "false tate curve", "finite-order character", "parallel weight" ], "tags": [ "journal article" ], "publication": { "doi": "10.1017/S0305004112000229", "journal": "Mathematical Proceedings of the Cambridge Philosophical Society", "year": 2012, "month": "Nov", "volume": 153, "number": 3, "pages": 471 }, "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012MPCPS.153..471W" } } }