{ "id": "1201.4062", "version": "v4", "published": "2012-01-19T14:06:45.000Z", "updated": "2012-05-24T03:26:50.000Z", "title": "New Real-Variable Characterizations of Musielak-Orlicz Hardy Spaces", "authors": [ "Yiyu Liang", "Jizheng Huang", "Dachun Yang" ], "comment": "J. Math. Anal. Appl. (to appear)", "categories": [ "math.CA", "math.FA" ], "abstract": "Let $\\varphi: {\\mathbb R^n}\\times [0,\\infty)\\to[0,\\infty)$ be such that $\\varphi(x,\\cdot)$ is an Orlicz function and $\\varphi(\\cdot,t)$ is a Muckenhoupt $A_\\infty({\\mathbb R^n})$ weight. The Musielak-Orlicz Hardy space $H^{\\varphi}(\\mathbb R^n)$ is defined to be the space of all $f\\in{\\mathcal S}'({\\mathbb R^n})$ such that the grand maximal function $f^*$ belongs to the Musielak-Orlicz space $L^\\varphi(\\mathbb R^n)$. Luong Dang Ky established its atomic characterization. In this paper, the authors establish some new real-variable characterizations of $H^{\\varphi}(\\mathbb R^n)$ in terms of the vertical or the non-tangential maximal functions, or the Littlewood-Paley $g$-function or $g_\\lambda^\\ast$-function, via first establishing a Musielak-Orlicz Fefferman-Stein vector-valued inequality. Moreover, the range of $\\lambda$ in the $g_\\lambda^\\ast$-function characterization of $H^\\varphi(\\mathbb R^n)$ coincides with the known best results, when $H^\\varphi(\\mathbb R^n)$ is the classical Hardy space $H^p(\\mathbb R^n)$, with $p\\in (0,1]$, or its weighted variant.", "revisions": [ { "version": "v4", "updated": "2012-05-24T03:26:50.000Z" } ], "analyses": { "subjects": [ "42B25", "42B30", "42B35" ], "keywords": [ "musielak-orlicz hardy space", "real-variable characterizations", "grand maximal function", "non-tangential maximal functions", "musielak-orlicz fefferman-stein vector-valued inequality" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1201.4062L" } } }