{ "id": "1201.3809", "version": "v1", "published": "2012-01-18T15:03:04.000Z", "updated": "2012-01-18T15:03:04.000Z", "title": "Maximal $L^2$ regularity for Dirichlet problems in Hilbert spaces", "authors": [ "Giuseppe Da Prato", "Alessandra Lunardi" ], "categories": [ "math.AP" ], "abstract": "We consider the Dirichlet problem $\\lambda U - {\\mathcal{L}}U= F$ in \\mathcal{O}, U=0 on $\\partial \\mathcal{O}$. Here $F\\in L^2(\\mathcal{O}, \\mu)$ where $\\mu$ is a nondegenerate centered Gaussian measure in a Hilbert space $X$, $\\mathcal{L}$ is an Ornstein-Uhlenbeck operator, and $\\mathcal{O}$ is an open set in $X$ with good boundary. We address the problem whether the weak solution $U$ belongs to the Sobolev space $W^{2,2}(\\mathcal{O}, \\mu)$. It is well known that the question has positive answer if $\\mathcal{O} = X$; if $\\mathcal{O} \\neq X$ we give a sufficient condition in terms of geometric properties of the boundary $\\partial \\mathcal{O}$. The results are quite different with respect to the finite dimensional case, for instance if \\mathcal{O} is the ball centered at the origin with radius $r$ we prove that $U\\in W^{2,2}(\\mathcal{O}, \\mu)$ only for small $r$.", "revisions": [ { "version": "v1", "updated": "2012-01-18T15:03:04.000Z" } ], "analyses": { "keywords": [ "dirichlet problem", "hilbert space", "regularity", "nondegenerate centered gaussian measure", "finite dimensional case" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1201.3809D" } } }