{ "id": "1201.3381", "version": "v2", "published": "2012-01-16T21:55:53.000Z", "updated": "2017-03-29T19:44:54.000Z", "title": "Hyperbolicity of minimizers and regularity of viscosity solutions for random Hamilton-Jacobi equations", "authors": [ "Konstantin Khanin", "Ke Zhang" ], "comment": "Updated version March 2017", "categories": [ "math.DS" ], "abstract": "We show that for a family of randomly kicked Hamilton-Jacobi equations, the unique global minimizer is hyperbolic, almost surely. Furthermore, we prove the unique forward and backward viscosity solutions, though in general only Lipshitz, are smooth in a neighbourhood of the global minimizer. Our result generalizes the result of E, Khanin, Mazel and Sinai (\\cite{EKMS00}) to dimension $d\\ge 2$, and extends the result of Iturriaga and Khanin in \\cite{IK03}.", "revisions": [ { "version": "v1", "updated": "2012-01-16T21:55:53.000Z", "comment": null, "journal": null, "doi": null }, { "version": "v2", "updated": "2017-03-29T19:44:54.000Z" } ], "analyses": { "subjects": [ "70H20", "76F20", "34F05", "37D25" ], "keywords": [ "random hamilton-jacobi equations", "hyperbolicity", "regularity", "unique global minimizer", "randomly kicked hamilton-jacobi equations" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1201.3381K" } } }