{ "id": "1201.3266", "version": "v3", "published": "2012-01-16T14:20:29.000Z", "updated": "2013-01-10T22:42:47.000Z", "title": "Trilinear forms and Chern classes of Calabi-Yau threefolds", "authors": [ "Atsushi Kanazawa", "P. M. H. Wilson" ], "comment": "to appear in Osaka Journal of Mathematics", "categories": [ "math.AG", "math-ph", "math.MP" ], "abstract": "Let X be a Calabi-Yau threefold and \\mu the symmetric trilinear form on the second cohomology group H^{2}(X,\\Z) defined by the cup product. We investigate the interplay between the Chern classes c_{2}(X), c_{3}(X) and the trilinear form \\mu, and demonstrate some numerical relations between them. When the cubic form \\mu(x,x,x) has a linear factor over \\R, some properties of the linear form and the residual quadratic form are also obtained.", "revisions": [ { "version": "v3", "updated": "2013-01-10T22:42:47.000Z" } ], "analyses": { "subjects": [ "14J32", "14F45" ], "keywords": [ "calabi-yau threefold", "chern classes", "symmetric trilinear form", "second cohomology group", "residual quadratic form" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1201.3266K" } } }