{ "id": "1201.2134", "version": "v3", "published": "2012-01-10T18:30:40.000Z", "updated": "2013-04-08T13:53:54.000Z", "title": "On the homotopy theory of enriched categories", "authors": [ "Clemens Berger", "Ieke Moerdijk" ], "comment": "v3: statement of Lemma 2.15 corrected", "categories": [ "math.AT", "math.CT" ], "abstract": "We give sufficient conditions for the existence of a Quillen model structure on small categories enriched in a given monoidal model category. This yields a unified treatment for the known model structures on simplicial, topological, dg- and spectral categories. Our proof is mainly based on a fundamental property of cofibrant enriched categories on two objects, stated below as the Interval Cofibrancy Theorem.", "revisions": [ { "version": "v3", "updated": "2013-04-08T13:53:54.000Z" } ], "analyses": { "subjects": [ "55U35", "18D20" ], "keywords": [ "homotopy theory", "interval cofibrancy theorem", "monoidal model category", "quillen model structure", "sufficient conditions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1201.2134B" } } }