{ "id": "1201.2096", "version": "v2", "published": "2012-01-10T16:11:08.000Z", "updated": "2012-08-09T16:26:01.000Z", "title": "Fréchet frames, general definition and expansions", "authors": [ "Stevan Pilipović", "Diana T. Stoeva" ], "comment": "A new section is added and a minor revision is done", "categories": [ "math.FA" ], "abstract": "We define an {\\it $(X_1,\\Theta, X_2)$-frame} with Banach spaces $X_2\\subseteq X_1$, $|\\cdot|_1 \\leq |\\cdot|_2$, and a $BK$-space $(\\Theta, \\snorm[\\cdot])$. Then by the use of decreasing sequences of Banach spaces ${X_s}_{s=0}^\\infty$ and of sequence spaces ${\\Theta_s}_{s=0}^\\infty$, we define a general Fr\\' echet frame on the Fr\\' echet space $X_F=\\bigcap_{s=0}^\\infty X_s$. We give frame expansions of elements of $X_F$ and its dual $X_F^*$, as well of some of the generating spaces of $X_F$ with convergence in appropriate norms. Moreover, we give necessary and sufficient conditions for a general pre-Fr\\' echet frame to be a general Fr\\' echet frame, as well as for the complementedness of the range of the analysis operator $U:X_F\\to\\Theta_F$.", "revisions": [ { "version": "v2", "updated": "2012-08-09T16:26:01.000Z" } ], "analyses": { "subjects": [ "42C15", "46A13" ], "keywords": [ "fréchet frames", "general definition", "echet frame", "banach spaces", "analysis operator" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1201.2096P" } } }