{ "id": "1201.1945", "version": "v4", "published": "2012-01-10T00:51:13.000Z", "updated": "2014-01-29T00:30:24.000Z", "title": "Lusin Area Function and Molecular Characterizations of Musielak-Orlicz Hardy Spaces and Their Applications", "authors": [ "Shaoxiong Hou", "Dachun Yang", "Sibei Yang" ], "journal": "Commun. Contemp. Math. 15 (2013), no. 6, 1350029, 37 pp", "categories": [ "math.CA", "math.FA" ], "abstract": "Lusin Area Function and Molecular Characterizations of Musielak-Orlicz Hardy Spaces and Their ApplicationsLet $\\varphi: \\mathbb R^n\\times [0,\\infty)\\to[0,\\infty)$ be a growth function such that $\\varphi(x,\\cdot)$ is nondecreasing, $\\varphi(x,0)=0$, $\\varphi(x,t)>0$ when $t>0$, $\\lim_{t\\to\\infty}\\varphi(x,t)=\\infty$, and $\\varphi(\\cdot,t)$ is a Muckenhoupt $A_\\infty(\\mathbb{R}^n)$ weight uniformly in $t$. In this paper, the authors establish the Lusin area function and the molecular characterizations of the Musielak-Orlicz Hardy space $H_\\varphi(\\mathbb{R}^n)$ introduced by Luong Dang Ky via the grand maximal function. As an application, the authors obtain the $\\varphi$-Carleson measure characterization of the Musielak-Orlicz ${\\mathop\\mathrm{BMO}}$-type space $\\mathop\\mathrm{BMO}_{\\varphi}(\\mathbb{R}^n)$, which was proved to be the dual space of $H_\\varphi(\\mathbb{R}^n)$ by Luong Dang Ky.", "revisions": [ { "version": "v4", "updated": "2014-01-29T00:30:24.000Z" } ], "analyses": { "subjects": [ "42B25", "42B30", "42B35", "46E30" ], "keywords": [ "musielak-orlicz hardy space", "lusin area function", "molecular characterizations", "luong dang ky", "application" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1201.1945H" } } }