{ "id": "1201.1632", "version": "v1", "published": "2012-01-08T13:29:17.000Z", "updated": "2012-01-08T13:29:17.000Z", "title": "Metric tensors for the interpolation error and its gradient in $L^p$ norm", "authors": [ "Xiaobo Yin", "Hehu Xie" ], "comment": "19 pages, 24 figures", "categories": [ "math.NA" ], "abstract": "A uniform strategy to derive metric tensors in two spatial dimension for interpolation errors and their gradients in $L^p$ norm is presented. It generates anisotropic adaptive meshes as quasi-uniform ones in corresponding metric space, with the metric tensor being computed based on a posteriori error estimates in different norms. Numerical results show that the corresponding convergence rates are always optimal.", "revisions": [ { "version": "v1", "updated": "2012-01-08T13:29:17.000Z" } ], "analyses": { "subjects": [ "65N30", "65N50" ], "keywords": [ "interpolation error", "generates anisotropic adaptive meshes", "posteriori error estimates", "uniform strategy", "derive metric tensors" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable" } } }