{ "id": "1201.1416", "version": "v2", "published": "2012-01-06T14:04:18.000Z", "updated": "2015-12-12T17:00:25.000Z", "title": "On the Morse-Sard property and level sets of $W^{n,1}$ Sobolev functions on ${\\mathbb R}^n$", "authors": [ "Jean Bourgain", "Mikhail V. Korobkov", "Jan Kristensen" ], "journal": "J.Reine Angew.Math. 700 (2015), 93--112", "categories": [ "math.AP", "math.CA" ], "abstract": "We establish Luzin N and Morse--Sard properties for functions from the Sobolev space $W^{n,1}({\\mathbb R}^{n})$. Using these results we prove that almost all level sets are finite disjoint unions of $C^1$--smooth compact manifolds of dimension $n-1$. These results remain valid also within the larger space of functions of bounded variation $BV_{n}({\\mathbb R}^{n})$. For the proofs we establish and use some new results on Luzin--type approximation of Sobolev and BV--functions by $C^k$--functions, where the exceptional sets have small Hausdorff content.", "revisions": [ { "version": "v1", "updated": "2012-01-06T14:04:18.000Z", "comment": null, "journal": null, "doi": null }, { "version": "v2", "updated": "2015-12-12T17:00:25.000Z" } ], "analyses": { "subjects": [ "58C25", "46E35" ], "keywords": [ "level sets", "morse-sard property", "sobolev functions", "finite disjoint unions", "smooth compact manifolds" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }