{ "id": "1201.1404", "version": "v1", "published": "2012-01-06T12:38:30.000Z", "updated": "2012-01-06T12:38:30.000Z", "title": "Skew Pieri Rules for Hall-Littlewood Functions", "authors": [ "Matjaz Konvalinka", "Aaron Lauve" ], "comment": "16 pages, 6 .eps files", "categories": [ "math.CO", "math.RA", "math.RT" ], "abstract": "We produce skew Pieri Rules for Hall--Littlewood functions in the spirit of Assaf and McNamara. The first two were conjectured by the first author. The key ingredients in the proofs are a q-binomial identity for skew partitions and a Hopf algebraic identity that expands products of skew elements in terms of the coproduct and the antipode.", "revisions": [ { "version": "v1", "updated": "2012-01-06T12:38:30.000Z" } ], "analyses": { "subjects": [ "05E05", "05E10", "16T05", "16T30", "33D52" ], "keywords": [ "hall-littlewood functions", "produce skew pieri rules", "hopf algebraic identity", "first author", "q-binomial identity" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1201.1404K" } } }